Actual source code: pepimpl.h
slepc-3.15.2 2021-09-20
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: #if !defined(SLEPCPEPIMPL_H)
12: #define SLEPCPEPIMPL_H
14: #include <slepcpep.h>
15: #include <slepc/private/slepcimpl.h>
17: SLEPC_EXTERN PetscBool PEPRegisterAllCalled;
18: SLEPC_EXTERN PetscBool PEPMonitorRegisterAllCalled;
19: SLEPC_EXTERN PetscErrorCode PEPRegisterAll(void);
20: SLEPC_EXTERN PetscErrorCode PEPMonitorRegisterAll(void);
21: SLEPC_EXTERN PetscLogEvent PEP_SetUp,PEP_Solve,PEP_Refine;
23: typedef struct _PEPOps *PEPOps;
25: struct _PEPOps {
26: PetscErrorCode (*solve)(PEP);
27: PetscErrorCode (*setup)(PEP);
28: PetscErrorCode (*setfromoptions)(PetscOptionItems*,PEP);
29: PetscErrorCode (*publishoptions)(PEP);
30: PetscErrorCode (*destroy)(PEP);
31: PetscErrorCode (*reset)(PEP);
32: PetscErrorCode (*view)(PEP,PetscViewer);
33: PetscErrorCode (*backtransform)(PEP);
34: PetscErrorCode (*computevectors)(PEP);
35: PetscErrorCode (*extractvectors)(PEP);
36: PetscErrorCode (*setdefaultst)(PEP);
37: };
39: /*
40: Maximum number of monitors you can run with a single PEP
41: */
42: #define MAXPEPMONITORS 5
44: typedef enum { PEP_STATE_INITIAL,
45: PEP_STATE_SETUP,
46: PEP_STATE_SOLVED,
47: PEP_STATE_EIGENVECTORS } PEPStateType;
49: /*
50: To check for unsupported features at PEPSetUp_XXX()
51: */
52: typedef enum { PEP_FEATURE_NONMONOMIAL=1, /* non-monomial bases */
53: PEP_FEATURE_REGION=4, /* nontrivial region for filtering */
54: PEP_FEATURE_EXTRACT=8, /* eigenvector extraction */
55: PEP_FEATURE_CONVERGENCE=16, /* convergence test selected by user */
56: PEP_FEATURE_STOPPING=32 /* stopping test */
57: } PEPFeatureType;
59: /*
60: Defines the PEP data structure.
61: */
62: struct _p_PEP {
63: PETSCHEADER(struct _PEPOps);
64: /*------------------------- User parameters ---------------------------*/
65: PetscInt max_it; /* maximum number of iterations */
66: PetscInt nev; /* number of eigenvalues to compute */
67: PetscInt ncv; /* number of basis vectors */
68: PetscInt mpd; /* maximum dimension of projected problem */
69: PetscInt nini; /* number of initial vectors (negative means not copied yet) */
70: PetscScalar target; /* target value */
71: PetscReal tol; /* tolerance */
72: PEPConv conv; /* convergence test */
73: PEPStop stop; /* stopping test */
74: PEPWhich which; /* which part of the spectrum to be sought */
75: PetscReal inta,intb; /* interval [a,b] for spectrum slicing */
76: PEPBasis basis; /* polynomial basis used to represent the problem */
77: PEPProblemType problem_type; /* which kind of problem to be solved */
78: PEPScale scale; /* scaling strategy to be used */
79: PetscReal sfactor,dsfactor; /* scaling factors */
80: PetscInt sits; /* number of iterations of the scaling method */
81: PetscReal slambda; /* norm eigenvalue approximation for scaling */
82: PEPRefine refine; /* type of refinement to be applied after solve */
83: PetscInt npart; /* number of partitions of the communicator */
84: PetscReal rtol; /* tolerance for refinement */
85: PetscInt rits; /* number of iterations of the refinement method */
86: PEPRefineScheme scheme; /* scheme for solving linear systems within refinement */
87: PEPExtract extract; /* type of extraction used */
88: PetscBool trackall; /* whether all the residuals must be computed */
90: /*-------------- User-provided functions and contexts -----------------*/
91: PetscErrorCode (*converged)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
92: PetscErrorCode (*convergeduser)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
93: PetscErrorCode (*convergeddestroy)(void*);
94: PetscErrorCode (*stopping)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
95: PetscErrorCode (*stoppinguser)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*);
96: PetscErrorCode (*stoppingdestroy)(void*);
97: void *convergedctx;
98: void *stoppingctx;
99: PetscErrorCode (*monitor[MAXPEPMONITORS])(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
100: PetscErrorCode (*monitordestroy[MAXPEPMONITORS])(void**);
101: void *monitorcontext[MAXPEPMONITORS];
102: PetscInt numbermonitors;
104: /*----------------- Child objects and working data -------------------*/
105: ST st; /* spectral transformation object */
106: DS ds; /* direct solver object */
107: BV V; /* set of basis vectors and computed eigenvectors */
108: RG rg; /* optional region for filtering */
109: SlepcSC sc; /* sorting criterion data */
110: Mat *A; /* coefficient matrices of the polynomial */
111: PetscInt nmat; /* number of matrices */
112: Vec Dl,Dr; /* diagonal matrices for balancing */
113: Vec *IS; /* references to user-provided initial space */
114: PetscScalar *eigr,*eigi; /* real and imaginary parts of eigenvalues */
115: PetscReal *errest; /* error estimates */
116: PetscInt *perm; /* permutation for eigenvalue ordering */
117: PetscReal *pbc; /* coefficients defining the polynomial basis */
118: PetscScalar *solvematcoeffs; /* coefficients to compute the matrix to be inverted */
119: PetscInt nwork; /* number of work vectors */
120: Vec *work; /* work vectors */
121: KSP refineksp; /* ksp used in refinement */
122: PetscSubcomm refinesubc; /* context for sub-communicators */
123: void *data; /* placeholder for solver-specific stuff */
125: /* ----------------------- Status variables --------------------------*/
126: PEPStateType state; /* initial -> setup -> solved -> eigenvectors */
127: PetscInt nconv; /* number of converged eigenvalues */
128: PetscInt its; /* number of iterations so far computed */
129: PetscInt n,nloc; /* problem dimensions (global, local) */
130: PetscReal *nrma; /* computed matrix norms */
131: PetscReal nrml[2]; /* computed matrix norms for the linearization */
132: PetscBool sfactor_set; /* flag to indicate the user gave sfactor */
133: PetscBool lineariz; /* current solver is based on linearization */
134: PEPConvergedReason reason;
135: };
137: /*
138: Macros to test valid PEP arguments
139: */
140: #if !defined(PETSC_USE_DEBUG)
142: #define PEPCheckSolved(h,arg) do {(void)(h);} while (0)
144: #else
146: #define PEPCheckSolved(h,arg) \
147: do { \
148: if ((h)->state<PEP_STATE_SOLVED) SETERRQ1(PetscObjectComm((PetscObject)(h)),PETSC_ERR_ARG_WRONGSTATE,"Must call PEPSolve() first: Parameter #%d",arg); \
149: } while (0)
151: #endif
153: /*
154: Macros to check settings at PEPSetUp()
155: */
157: /* PEPCheckHermitian: the problem is Hermitian or Hyperbolic */
158: #define PEPCheckHermitianCondition(pep,condition,msg) \
159: do { \
160: if (condition) { \
161: if ((pep)->problem_type!=PEP_HERMITIAN && (pep)->problem_type!=PEP_HYPERBOLIC) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s can only be used for Hermitian (or hyperbolic) problems",((PetscObject)(pep))->type_name,(msg)); \
162: } \
163: } while (0)
164: #define PEPCheckHermitian(pep) PEPCheckHermitianCondition(pep,PETSC_TRUE,"")
166: /* PEPCheckQuadratic: the polynomial has degree 2 */
167: #define PEPCheckQuadraticCondition(pep,condition,msg) \
168: do { \
169: if (condition) { \
170: if ((pep)->nmat!=3) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s is only available for quadratic problems",((PetscObject)(pep))->type_name,(msg)); \
171: } \
172: } while (0)
173: #define PEPCheckQuadratic(pep) PEPCheckQuadraticCondition(pep,PETSC_TRUE,"")
175: /* PEPCheckShiftSinvert: shift or shift-and-invert ST */
176: #define PEPCheckShiftSinvertCondition(pep,condition,msg) \
177: do { \
178: if (condition) { \
179: PetscBool __flg; \
180: PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STSHIFT,""); \
181: if (!__flg) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s requires shift or shift-and-invert spectral transform",((PetscObject)(pep))->type_name,(msg)); \
182: } \
183: } while (0)
184: #define PEPCheckShiftSinvert(pep) PEPCheckShiftSinvertCondition(pep,PETSC_TRUE,"")
186: /* PEPCheckSinvertCayley: shift-and-invert or Cayley ST */
187: #define PEPCheckSinvertCayleyCondition(pep,condition,msg) \
188: do { \
189: if (condition) { \
190: PetscBool __flg; \
191: PetscObjectTypeCompareAny((PetscObject)(pep)->st,&__flg,STSINVERT,STCAYLEY,""); \
192: if (!__flg) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s requires shift-and-invert or Cayley transform",((PetscObject)(pep))->type_name,(msg)); \
193: } \
194: } while (0)
195: #define PEPCheckSinvertCayley(pep) PEPCheckSinvertCayleyCondition(pep,PETSC_TRUE,"")
197: /* Check for unsupported features */
198: #define PEPCheckUnsupportedCondition(pep,mask,condition,msg) \
199: do { \
200: if (condition) { \
201: if (((mask) & PEP_FEATURE_NONMONOMIAL) && (pep)->basis!=PEP_BASIS_MONOMIAL) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s is not implemented for non-monomial bases",((PetscObject)(pep))->type_name,(msg)); \
202: if ((mask) & PEP_FEATURE_REGION) { \
203: PetscBool __istrivial; \
204: PetscErrorCode __RGIsTrivial((pep)->rg,&__istrivial);CHKERRQ(__ierr); \
205: if (!__istrivial) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s does not support region filtering",((PetscObject)(pep))->type_name,(msg)); \
206: } \
207: if (((mask) & PEP_FEATURE_EXTRACT) && (pep)->extract && (pep)->extract!=PEP_EXTRACT_NONE) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s does not support extraction variants",((PetscObject)(pep))->type_name,(msg)); \
208: if (((mask) & PEP_FEATURE_CONVERGENCE) && (pep)->converged!=PEPConvergedRelative) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default convergence test",((PetscObject)(pep))->type_name,(msg)); \
209: if (((mask) & PEP_FEATURE_STOPPING) && (pep)->stopping!=PEPStoppingBasic) SETERRQ2(PetscObjectComm((PetscObject)(pep)),PETSC_ERR_SUP,"The solver '%s'%s only supports the default stopping test",((PetscObject)(pep))->type_name,(msg)); \
210: } \
211: } while (0)
212: #define PEPCheckUnsupported(pep,mask) PEPCheckUnsupportedCondition(pep,mask,PETSC_TRUE,"")
214: /* Check for ignored features */
215: #define PEPCheckIgnoredCondition(pep,mask,condition,msg) \
216: do { \
217: PetscErrorCode __ierr; \
218: if (condition) { \
219: if (((mask) & PEP_FEATURE_NONMONOMIAL) && (pep)->basis!=PEP_BASIS_MONOMIAL) { __PetscInfo2((pep),"The solver '%s'%s ignores the basis settings\n",((PetscObject)(pep))->type_name,(msg)); } \
220: if ((mask) & PEP_FEATURE_REGION) { \
221: PetscBool __istrivial; \
222: __RGIsTrivial((pep)->rg,&__istrivial);CHKERRQ(__ierr); \
223: if (!__istrivial) { __PetscInfo2((pep),"The solver '%s'%s ignores the specified region\n",((PetscObject)(pep))->type_name,(msg)); } \
224: } \
225: if (((mask) & PEP_FEATURE_EXTRACT) && (pep)->extract && (pep)->extract!=PEP_EXTRACT_NONE) { __PetscInfo2((pep),"The solver '%s'%s ignores the extract settings\n",((PetscObject)(pep))->type_name,(msg)); } \
226: if (((mask) & PEP_FEATURE_CONVERGENCE) && (pep)->converged!=PEPConvergedRelative) { __PetscInfo2((pep),"The solver '%s'%s ignores the convergence test settings\n",((PetscObject)(pep))->type_name,(msg)); } \
227: if (((mask) & PEP_FEATURE_STOPPING) && (pep)->stopping!=PEPStoppingBasic) { __PetscInfo2((pep),"The solver '%s'%s ignores the stopping test settings\n",((PetscObject)(pep))->type_name,(msg)); } \
228: } \
229: } while (0)
230: #define PEPCheckIgnored(pep,mask) PEPCheckIgnoredCondition(pep,mask,PETSC_TRUE,"")
233: SLEPC_INTERN PetscErrorCode PEPSetWhichEigenpairs_Default(PEP);
234: SLEPC_INTERN PetscErrorCode PEPSetDimensions_Default(PEP,PetscInt,PetscInt*,PetscInt*);
235: SLEPC_INTERN PetscErrorCode PEPExtractVectors(PEP);
236: SLEPC_INTERN PetscErrorCode PEPBackTransform_Default(PEP);
237: SLEPC_INTERN PetscErrorCode PEPComputeVectors(PEP);
238: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Default(PEP);
239: SLEPC_INTERN PetscErrorCode PEPComputeVectors_Indefinite(PEP);
240: SLEPC_INTERN PetscErrorCode PEPComputeResidualNorm_Private(PEP,PetscScalar,PetscScalar,Vec,Vec,Vec*,PetscReal*);
241: SLEPC_INTERN PetscErrorCode PEPKrylovConvergence(PEP,PetscBool,PetscInt,PetscInt,PetscReal,PetscInt*);
242: SLEPC_INTERN PetscErrorCode PEPComputeScaleFactor(PEP);
243: SLEPC_INTERN PetscErrorCode PEPBuildDiagonalScaling(PEP);
244: SLEPC_INTERN PetscErrorCode PEPBasisCoefficients(PEP,PetscReal*);
245: SLEPC_INTERN PetscErrorCode PEPEvaluateBasis(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
246: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisDerivative(PEP,PetscScalar,PetscScalar,PetscScalar*,PetscScalar*);
247: SLEPC_INTERN PetscErrorCode PEPEvaluateBasisMat(PEP,PetscInt,PetscScalar*,PetscInt,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt,PetscScalar*,PetscInt);
248: SLEPC_INTERN PetscErrorCode PEPNewtonRefinement_TOAR(PEP,PetscScalar,PetscInt*,PetscReal*,PetscInt,PetscScalar*,PetscInt);
249: SLEPC_INTERN PetscErrorCode PEPNewtonRefinementSimple(PEP,PetscInt*,PetscReal,PetscInt);
250: SLEPC_INTERN PetscErrorCode PEPSetDefaultST(PEP);
251: SLEPC_INTERN PetscErrorCode PEPSetDefaultST_Transform(PEP);
253: #endif